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Order Structures and Dislocations in 
Bubble Raft Grain Boundary 

Y. I S H I D A *  
Institute of Industrial Science, University of Tokyo, Japan 

Bubble raft boundaries were examined to visualise atom configurations in the grain 
boundary of metals. The application of vibration to the bubble raft indicated that the 
boundary preferred ordered structures. Certain bubble configurations were repeated 
regularly along the boundary (long-range order boundary) or distributed irregularly 
(short-range order boundary). The orientation relationship of the former agreed with that 
of the coincidence-site lattice boundary, while the latter occurred only between densely 
packed rows of bubbles. 

Various order structures occurred for each coincidence orientation. The relative stability 
depended on the bubble size and the vibration. Perfect and imperfect dislocations were 
observed in the long-range order boundary. The Burgers vector of the former is determined 
completely from the lattice coincidence geometry, while the vector of the latter changed 
with the bubble size. The boundary dislocation usually retains a step in the boundary. 
Therefore, glide motion of the dislocation caused grain-boundary migration by an amount 
equal to the step height. 

I .  Introduction 
Experimental evidence has been accumulated 
that certain order structures occur in high-angle 
grain boundaries of metals. For an example, a 
regular array of boundary dislocations and fine 
serration were observed in the grain boundary of 
an annealed Fe-Mn alloy by transmission electron 
microscopy [14]. The same dislocation images 
were observed in the grain boundary of bi- 
crystals prepared artificially for coincidence 
orientation relationships [18, 24]. Earlier investi- 
gations with field ion microscopy were also able 
to detect micro-serrations [20] and occasional 
dislocations in the grain boundary [23]. These 
fine features can occur only when the grain 
boundary retains an ordered structure. They are 
attributed to two types of defect in the ordered 
grain boundary in coincidence-orientation 
relationship. The coincidence theory has been 
characterised by the elaboration on the orienta- 
tional relationships of the ordered boundary 
[3, 4, 7, 22] and by ignoring complexities of 
actual atomic configurations along the bound- 
ary. The latter problem is important, since the 
energy of the boundary is determined actually by 
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the atomic fit and onlv indirectly by the lattice 
fit [1]. 

A bubble raft is used in the present experiment 
to study qualitatively the atomic configurations 
in ordered grain boundaries and near the defect 
structures. The bubble raft is a simple and 
inexpensive model of metallic crystal structures. 
It has played an important role in the history of 
lattice-defect studies, especially of the grain- 
boundary structure [8-10, 19]. Other visual 
models have been developed (for an example, 
Longinov [13]), but the old model is still useful. 
The atomic configurations seen in the bubble 
raft model may now be compared with those 
determined by the energy calculations. The 
morse potential is commonly used for such 
calculations [12, 25]. In comparison the bubble 
rafter model is very qualitative, but the model 
accounts for some physically important factors 
such as many-body forces and temperature 
effects [10]. 

2. Experimental Methods 
A commercial liquid soap "Raipon F" was 
dissolved in water in which a fine glass tube 
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Figure 1 Apparatus for producing rafts of bubbles. 

(exit diameter < 0.1 mm) was immersed to 
generate air bubbles of diameter 0.5 ~ 2 mm, as 
shown in fig. 1. The bubble size varies with the 
shape and the diameter of the glass tube, the rate 
of the bubble generation and the depth of the 
glass tube tip below the water surface. A change 
in the bubble diameter corresponds to a change 
in the interatomic force distance relationship of 
atoms in the crystal [5]. Steady bubble genera- 
tion was assured by a water reservoir about 1 m 
above the vessel. A commerciai lapping polisher 
(Shinko-Syntron) was used to vibrate the vessel 
at 60 cycles/sec, with variable amplitude. The 
formation of a standing wave was avoided by 
placing a cloth on the rim of the vessel. To 
observe the glide motion of boundary-disloca- 
tions, the bubble raft boundary was sheared by 
tilting the vessel slightly by a finger. A 16 mm 
movie was used to record the glide motion. The 
bubble image was best when illuminated at a 
glancing angle to the water surface. A black 
surface beneath the vessel improved the bubble 
image. 

3. Experimental Results 
3.1. Formation of Order Structures 
Fig. 2 is a micrograph of bubble rafts. Bubbles 
were generated one by one from a glass tube in 
the water, formed a small raft and floated 
away from the tube. When two small rafts 
met, there was usually a violent interaction 
involving the migration of the newly formed 
boundary and the emission of lattice dislocations 
from it. As the result, the grain boundary usually 
disappeared and only low-energy boundaries 
survived. A cyclic repetition of a bubble configur- 
ation was often noticed in such a boundary 
(indicated by an arrow in fig. 2). A similar 
ordering reaction was observed when a large 
bubble raft was stirred by a glass rod. A very 
rapid recrystallisation immediately occurred, 
followed by grain growth as the water was kept 
vibrating. Numerous small ordered regions 
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Figure 2 Occurrence of order structure in an as-grown 
bubble raft boundary. 

appeared on the boundary. They had a tendency 
to grow with time. 

3.2. Short and Long-range Order 
Two types of order were noticed. In the grain 
boundary of fig. 2, the same bubble configuration 
is repeated regularly along the boundary. The 
nature of the order is of long range. In fig. 3 
however, certain configurations (in circles) are 
scattered irregularly along the grain boundary. 
The nature of the order is of short range. The 
orientation relationship of the neighbouring 
grains may be described approximately by a 30 ~ 
rotation about the normal to the water surface. 
The boundary lies between the first and the 
second most densely packed rows of bubbles. No 
similar boundary involving the third or other 

Figure 3 A bubble raft boundary with short range order. A 
good fit configuration occurs in an irregular manner (in 
circles) along the boundary. The boundary occurred 
between the first and the second densely packed rows of 
the bubble raft. Bubble diameter 1.2 mm. 
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less densely packed row of bubbles was observed. 
Grain-boundary dislocations as observed in elec- 
tron micrographs cannot exist in this type of grain 
boundary. 

The later sections are concerned only with the 
long range order type structures. 

3.3. Bubble Conf igura t ions  in the Long-range 
Order Boundary  (co inc idence boundary)  

The orientation relationship of a long-range 
order grain boundary agrees always with that of 
a coincidence-site lattice boundary. However, 
more than one kind of  bubble configuration was 
found for each coincidence orientation. For 
example, in fig. 4, all the boundaries are in ~7 
coincidence orientation relationship: 21.8 ~ rota- 
tion about the normal of the water surface. The 

notation is defined by Brandon, Ralph, 
Ranganathan and Wald [6]. The value is the 
ratio between the densities of the crystal lattice 
sites and the coincidence sites. Although the 
bubble configurations are different, the spacings 
of the unit configurations are the same. The 
amount of the relative translation of the crystals, 
however, varies with each configuration. It is 
chosen so as to achieve an optimum atomic fit. 
The lattice-site coincidence, therefore, does not 
usually occur when the two crystal lattices are 
hypothetically extended and superimposed. The 
long-range order boundary is called the "coin- 
cidence boundary" only because of the character- 
istics of the orientational relationship. 

The configurations a and b of fig. 4 are in 
mirror symmetry with respect to the boundary 
while that of c is not. Left and right-handed 
boundaries can occur with c. Some boundaries 

Figure 4 Bubble raft boundaries in Z7 coincidence orienta- 
tion relationship. The occurrence of the configurations 
was determined mainly by the size of the bubble. Bubble 
diameter a, 1.7 mm, b and e,0.8 mm. 

Figure 5 Bubble raft boundaries in Z13b coincidence 
orientation reJationship.(a)Occurs with vibration while(b) 
is preferred in the absence of the vibration. (Fig. 5a 
is supplied by courtesy of Ookawa.) 

are symmetrical but involve a translation parallel 
to the boundary, e.g. fig. 5b. 

The occurrence of the a and b configurations 
of fig. 4 was determined mainly by the difference 
in the compressibility of the bubble as a function 
of bubble size [5]. Two bubbles are compressed 
into a site in a, while in b only one bubble stays 
in the corresponding site. The a configuration 
occurred when the minimum spacing between 
the bubbles in the raft was more than 1 ram; 
for smaller spacings, the b configuration was 
preferred. The two configurations can transform 
into each other without involving bubble 
diffusion if the boundary is made to migrate by 
imposing a small shear. The c configuration 
appears as if the two equivalent planes corres- 
ponding to {5 41 } in fcc structure meet with little 
rearrangement of bubble sites; this configuration 
was observed when the bubble spacing in the raft 
was 0.8 ram. To be exact, the bubble arrange- 
ment changes slightly with the bubble size even 
if the type of the configuration remains the same. 
Two bubble configurations coexisted in certain 
bubble size ranges. The configuration with 
higher energy behaved as stacking fault to the 
other. 

Fig. 5 is another example of order configura 
tions, in ~13b coincidence boundary. Two 
configurations can occur. The a* configuration is 
preferred when the water was vibrated strongly 
while b was commonly observed without the 
vibration. The a configuration is more loosely 
bonded than the b configuration so that the 

*Fig. 5a was selected from the photographs taken by Fukushima and Ookawa (Private communication). The other 
photographs were taken by the author. 
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Figure 6 Bubble raft boundary in ~31 coincidence orienta- 
tion relationship. Bubbles marked in black indicate the 
configuration unit. 

bubbles in an a boundary are relatively free to 
vibrate. 

Owing to the dimensional limitation, the 
bubble raft model can produce only boundaries 
with [1 1 1] rotation axis in the fcc structure. 
Among them coincidence systems with small ~, 
values such as ~7, 13b and 19b were frequently 
observed. Coincidence boundaries with higher 
values were also found. For example, the 
boundary in fig. 6 is a ~31 coincidence bound- 
ary. A ~151 coincidence boundary is shown in 
fig. 7 where the unit spacing of the boundary 
configuration is very large, as shown marked in 
black. 

3.4. Faceting of Coinc idence  Boundaries  
Only certain boundary orientations are allowed 
with each coincidence system. The boundary, 
however, can assume any orientation macro- 
scopically if it is serrated in microscopic scale by 
combining small areas of coincidence boundaries. 
Fig. 8 shows an example of atom configurations 
around such bending in a ~7 coincidence 
boundary. Boundaries in the bubble raft usually 
turn through 120 ~ since three identical coincid- 
ence boundaries inclined at 60 ~ to each other 
78 

Figure 7 Bubble raft boundary in ~151 coincidence 
orientation relationship. The unit configuration is very 
large as indicated by bubbles marked in black. 

occur with coincidence systems in a [1 11] 
rotation relationship. The bubble configuration 
at the corner of the zigzag is complex as is shown 
in fig. 8. A strain-field extends into the neigh- 
bouring grains as if a dislocation lies at the 
corner. 

Figure 8 Disordering in the bubble configuration at the 
bend of a ~7 coincidence boundary. A strain field occurs 
round the corner when the lattice site coincidence is not 
achieved. 
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3.5 Segregation of Irregular Size Bubbles in 
the Coincidence Boundary 

Odd-sized bubbles were often found to stay in 
the boundary. The segregation is caused mainly 
by the impeding action exerted by such bubbles 
against the migration of the boundary, since the 
diffusive motion of odd-sized bubbles is very 
limited. A coincidence boundary, however, is so 
mobile under a shear stress that the irregular- 
sized bubbles and even a vacancy were left in the 
new grain after the boundary had migrated. 

3.6. Grain-boundary Dislocations 
Deviations from the exact coincidence orienta- 
tion relationship are accommodated by a net- 
work of boundary dislocations superimposed on 
the coincidence-boundary. Figs. 9 and 10 are 
examples of such boundary dislocations (perfect 
dislocations) in ~7 and ~13b boundaries 
respectively. The Burgers vector of the perfect 
boundary dislocation is determined graphically 
from the coincidence plot. This method has been 
developed elsewhere [15]. An example is shown 
in fig. 11 where a ~13b coincidence is analysed. 
Double circles indicate coincidence lattice sites. 
White and black circles are the lattice sites of the 
neighbouring rafts. Both lattices are extended 

Figure 9 A boundary dislocation (a perfect edge disloca- 
tion) in a ~7 coincidence boundary. The Burgers vector 
b = a/14 <321> is 60 ~ off the boundary. 

Figure 10 A boundary perfect dislocation in a ~13b 
coincidence boundary. The Burgers vector b =  a/26 
<431) is equal to the difference vectors A and B in f ig.11. 

into each other for convenience of analysis; 
obviously only either white or black circles are 
occupied on one side of the boundary once it is 
fixed. It has been proved geometrically that the 
difference vector between an arbitrary pair of 
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Figure 11 Coincidence plot of ~13b bubble raft boundary. 
The difference vector between A and B vectors b = a/26 
<431) equals the Burgers vector of fig. 10. The height of 
the dislocation step is H. 
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Figure 12 Burgers vectors of edge dislocations in the ~13b 
coincidence bubble raft boundary. Those in white circles 
agree at the same time with those of lattice dislocations. 
Black circles are those of boundary dislocations proper. 

lattice sites of the figure corresponds to the 
Burgers vector of a boundary dislocation [15]. 
Among the difference vectors those between the 
lattice sites of the same crystal (white circles in 
fig. 12) are also those of lattice dislocations while 
those between lattice sites of one crystal and the 
other (black circles) are those of boundary 
dislocations proper. They can exist only in the 
grain boundary. In fig. 12 only the Burgers 
vectors parallel to {1 1 1 } of the fcc structure are 
shown. Owing to the dimensional limitation, only 
edge dislocations with these Burgers vectors are 
seen in the bubble boundary. In true metals the 
Burgers vector lattice is three-dimensional. The 
Burgers vector of the boundary dislocation in 
fig. 10 may be determined by comparing the 
identical bubble sites (marked in black as 
examples) on both sides of the dislocation. The 
difference vectors A and B may be plotted in the 
corresponding coincidence site as shown in 
fig. 11. The Burgers vector is equal to the differ- 
ence between these two vectors in fig. 11. It is 
marked by X in fig. 12 which is 60 ~ off the 
boundary line. Thus the Burgers vector  of the 
perfect boundary dislocation is determined 
unambiguously from the crystal structure, the 
lattice spacing and the coincidence system. It is 
not affected by the actual bubble configuration 
(like those in fig. 4) or by the orientation of the 
boundary on which the dislocation lies. The 
Burgers vector of an imperfect dislocation, on the 
other hand, changes with the bubble size even if 
the type of the configurations on both sides of the 
imperfect dislocation does not change. Fig. 13 is 
an example of such an imperfect dislocation in a 
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Figure 13 An example of an imperfect dislocation in a ~7 
coincidence boundary. The Burgers vector changes with 
the bubble size. 

7.7 coincidence boundary. Similarly, the strain 
field at the corner of the boundary serration 
should change with the bubble size and the type 
of the configuration. 

Every boundary dislocation in the bubble 
boundary, carries a small boundary step in the 
core as shown in figs. 9, 10 and 13. The boundary 
step is inseparable from the dislocation. It is 
different from the micro-serration of the perfect 
coincidence boundary as proposed by Brandon 
[7] (Brandon step). The former retains a long 
range stress field due to the boundary dislocation 
while the latter does not. The height of the 
dislocation step is equal to the distance between 
the boundary and the middle point of the 
corresponding lattice site pair as marked H in 
fig. 11, while that of Brandon step is equal to the 
spacing of the coincidence lattice. Again, the step 
height of an imperfect boundary dislocation 
cannot be determined from the lattice geometry 
alone, The dislocation step would cause the 
boundary to deviate from the exact coincidence 
plane when networks <,f the boundary dislocation 
lie in it. 
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Figure 14 Slide motion of a boundary dislocation in a ~13b 
coincidence boundary. The boundary migrated by the 
amount equal to the step height of the dislocation. 

3.7. Glide Motion of the Boundary 
Dis locat ion 

A boundary dislocation can slide only when the 
Burgers vector is parallel to the boundary. 
However, there is always at least one kind of 
boundary dislocation whose Burgers vector is 
parallel to the coincidence boundary. Fig. 14 a 
and b shows an example in a bubble boundary 
where a boundary dislocation b=a/26(431) 
moved in a ~13b coincidence boundary. The 
force required for the glide motion was larger 
than it would be for a lattice dislocation, but 
much smaller than the stress required to initiate 
a lattice dislocation at the edge of the bubble 
crystal. The large Peierls stress of the dislocation 
motion must be due to the complex motion of 
individual bubbles during the dislocation motion. 
The Peierls stress was lowered when the strain 
field of the dislocation along the boundary was 
wide because of boundary relaxation. When the 
bubble diameter was almost 1 mm, the a and b 
bubble configurations in fig. 4 possessed nearly 
equal stability so that the widening of the strain 
field was especially large. The boundary disloca- 
tions interacted strongly with each other. Exten- 

sive glide motion was observed only when other 
kinds of boundary dislocation were absent. 

4. Discussion 
Vibration of the bubble raft was necessary to 
rearrange the bubble configuration in the bound- 
ary, without this the bubble raft would 
correspond to metals at 0~ The vibration, 
however, was not sufficient to cause vacancy 
diffusion. The absence of the diffusion process 
must have obstructed full scale realisation of 
order structures especially those with large 
values in the bubble raft boundary. Therefore it 
may be suggested that the ordering is more 
completely accomplished in annealed metals 
than in the bubble raft. It is also suggested for 
metals that certain impurity elements segregate 
regularly along the ordered boundary and lower 
the energy. 

The short-range order boundary may agree 
with the island model of  Mott  [21 ]. It is interest- 
ing to know how abundant the short range order 
boundaries are in single phase polycrystalline 
specimens of metals. It appears that this type of 
order occurs only between densely packed planes 
of the metal crystal. Various high energy atomic 
configurations will occur around the good fit 
configuration so that usually the total boundary 
energy is not very low. However, in the inter- 
phase boundary the long range order boundary 
will not occur. The short-range order boundary 
may generally occur instead. 

The bubble-size effect on the configuration in 
the long-range order boundary suggests the atom 
configurations vary with metals even if the 
crystal structure and the boundary orientation 
relationship are the same. 

The amplitude of the raft vibration would 
correspond to the temperature. The structure 
with higher vibrational entropy such as the a 
configuration in fig. 5 must be more stable at 
higher temperatures than b configuration. Such 
structural change with temperature is likely to 
occur generally in the grain boundaries of metals. 

A strain-field occurs at the bend of a faceted 
coincidence boundary, since good atomic fit and 
not lattice site coincidence is achieved at the 
coincidence-boundary. The component bound- 
aries (facets) should have tendency to grow in 
size to reduce the overall energy of the boundary. 
In fact, in well annealed specimens, the facets 
were sometimes as large as 0.1 /xm [14], while in 
vapour grown iron bicrystals facets as large as 
10/zm were found [16]. According to FIM [20], 
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however, the serration is usually too fine for a 
transmission electron microscope to resolve. The 
minimum size of the serration is determined by 
the spacing of the coincidence lattice. The order 
structure and a long range stress field at the 
corner could not be maintained, if the size were 
less than several times as large as the spacing. A 
disordered structure equivalent to the Brandon 
step would occur instead. 

According to the analysis of fig. 12, the 
magnitude of the unit Burgers vector of  a 
boundary dislocation is smaller than that of  a 
lattice dislocation.* The corresponding energy 
is small. For example, the magnitude of the 
Burgers vector of a boundary dislocation in fig. 
10 is about  �88 of that of a lattice dislocation, 
so that the energy would be only of the order of  
~ .  The magnitude tends to decrease with in- 
crease in ~ values. Therefore, boundary dis- 
locations are likely to exist even in coincidence 
boundaries of  large ~ values. The angular range 
covered by a coincidence boundary together 
with a network of boundary dislocations, 
however, is small when the Burgers vector is 
small and the spacing of the coincidence lattice is 
large. 

The glide motion of a boundary dislocation 
was limited by the faceting of the coincidence 
boundary. A long range sliding of the boundary 
dislocation is not likely to occur. The reciprocat- 
ing slide motion, however, may occur and cause 
internal friction as proposed by Leak [17]. The 
reciprocating motion means a reciprocating 
migration of the boundary since the boundary 
dislocation usually retains a boundary step. The 
boundary dislocations move as an array so that 
any obstacle would suffer from a strong stress 
concentration from a "ready-made" pile up. 

5. Conclusion 
Bubble rafts are analysed to study the arrange- 
ment of atoms in the grain boundaries of  single 
phase poly-crystals. The following conclusions 
are drawn; 
(1) The bubble raft boundary shows preference 
for ordered structures. Defect structures such as 
boundary dislocations are defined in the ordered 
boundary. 
(2) Long and short-range order structures were 
found. The orientation relationship of the former 
fulfilled that of  the coincidence site lattice 

boundary. The latter occurred only between 
densely packed rows of bubbles in the raft. 
(3) Several order configurations were found for 
the same coincidence orientation. Their relative 
stability varied with the bubble size and the 
presence or absence of vibration, suggesting 
variable a tom configurations in the grain 
boundaries of  metals even if the orientation 
relationship is the same. 
(4) Boundary dislocations were observed. The 
Burgers vector of  the perfect dislocation may be 
determined from the coincidence plot, while that 
of the imperfect dislocation varied with the 
bubble size. The dislocation usually retained a 
step in the boundary. 
(5) Some boundary dislocations glided in shear, 
which resulted in migration of the boundary 
through a distance equal to the step height. 
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